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Abstract--A solution is presented for determining the stresses in an infinite elastic plate containing a rigid rectan­
gular inclusion subject to a uniform stress field. The practical motivation behind this research was that high stresses
are known to occur at the junctions offibers and matrix in multifiber composite sheets, and these can cause failure.
The results presented here were obtained from a preliminary investigation into methods for calculating the
magnitude of the stresses.

The solution is obtained from Muskhelishvili's complex variable method in conjunction with the Schwartz­
Christoffel conformal mapping technique. The effects of various degrees of truncation of the mapping function
series on the geometry of the inclusion and the bond stresses are investigated. It is found that ten terms of the
series are generally sufficient to give an overall accurate picture of the bond stresses at the junction of the inclusion
and plate.

1. INTRODUCTION

IN two-dimensional elasticity. it is well known that the problem of finding the stresses
around a rigid inclusion or a hole in an otherwise isotropic homogeneous elastic plate
can be solved by the complex variable method of Muskhelishvili [1].

Problems ofa plain or reinforced hole in an infinite sheet have been reviewed extensively
in the book by Savin [2]. The solution for a hole in the form of a getJ-eral ovaloid and that
for a rigid inclusion which is very roughly square has been studied by Greenspan [3],
Morkovin [4] and Yu [5]. However, in all these investigations, the authors used a mapping
function consisting only of three terms. Because of this restriction, the corners of the hole
or the inclusion have a definite radius ofcurvature, and the sides of the hole are not straight,
but curved. The effect of the geometrical approximation on the stresses has not been investi­
gated. In order to examine these geometrical restrictions, the present analysis used mapping
functions which are obtained in series form by the Schwartz-Christoffel transformation.
This enables the corners to be given a specified radius of curvature and the sides made as
straight as desired.

A parametric study is made here of a single, rigid, rectangular inclusion in a plate sub­
jected to a uniform stress field. The effects of the number of terms in the mapping function
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on the geometrical configuration as well as on the normal and tangential bond stresses
are presented.

High stresses can occur at the junctions of fibers and matrix in multifiber composite
sheets, and these can cause failure. This fact provided the practical motivation for the
research. The results given were obtained from a preliminary investigation into methods
for calculating the magnitude of the stresses.

2. ANALYSIS

From the theory of functions of a complex variable, it is known that the interior or
exterior of a polygon can be mapped to the inside or outside of a unit circle by a Schwartz­
Christoffel transformation.

z = w«() (1)

where ( = p ei8 and (p, 8) are polar coordinates.
Muskhelishvili's complex variable method for solving two-dimensional elasticity

problems for a simply connected region consists of the determination of two analytic
functions cj>(z) and I/J(z) to represent the stress function. By substituting z = w«() in cj>(z)
and I/J(z) we have

cj>(O = cj>[w(OJ and I/J«() = I/J[w«()]'

The stress components can then be expressed in the forms

0"8+O"p = 2[<I>«()+<I>«()]*

2(2
0"8-O"p+2iTp8 = p2

W
'«() [w«()<I>'«()-w'«()'P(O]

(2)

(3)

'P(r) = I/J'«().
~ w'«()

where 0"8 and 0"p are the normal stress components and Tp8 is the shearing stress with
reference to polar coordinates, and

¢'(()
<I>«() = w'«()'

The radial and tangential displacements in the (-plane are given by

2plw'(OI(up + iV8) = 2J.l rw'«()(u + iv)
p

= fW'«()[K¢«()- w«() ¢'«()-I/J«()]
p w'«()

(4)

where u and v are the x- and y-direction displacements in the z-plane, and K is a constant
defined by

A+3J.l
K = -,-- = 3 - 4v for plane strain

1'.+ Ii

5A+6J.l 3-v
= -3'2 = -1- for plane stress.

,1.+ J.l +v

* The conjugate of a function is denoted by placing a bar over the function.
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Here Aand p. are Lame's constants, and v is Poisson's ratio. The boundary condition for the
second fundamental problem of elasticity can be expressed as

w(O')- -
KcP(O') - w'(O') cP'(O') - r{!(0') = 2p.(g\ + igz)

on the boundary 0' = ei9
, where gl + igz = u + iv and u and v are the x- and y-direction

components of the displacement vector acting on the boundary in the z-plane.
Consider an unpierced infinite plate of homogeneous, isotropic elastic material in a

uniform stress field. Let O'xo, O'yO and 'xyO be the stress components in the plate. The cor­
responding stress functions cPo(z) and r{!o(z) are easily determined. If a rigid inclusion of
arbitrary shape is now inserted in the plate, it will cause a redistribution of stresses from
O'xo, O'yO and 'xyO to ax, O'y and 'xy' Let the perturbation stresses due to the inclusion be
O'xt> O'yl, and 'xyt> so that

(6)

New stress functions cP(z) and r{!(z) can now be written as

(7)

where cP\(z) and r{!\(z) produce only the perturbational stresses which are to be determined.
Consider a conformal transformation of the area outside of the inclusion onto the inside

of a uni t circle y in the (-plane. The mapping function can be shown to be of the form

z = w(O c(~+ a regular function).

The stress functions cP(z) and r{!(z) can be transformed to

(8)

where

Since the perturbation stresses 0'xl, 0'yl, and Txyl are due to the presence ofthe inclusion,
they must decrease progressively as z is increased. The stress functions cPl(() and r{!\(O
take the forms

00

cP\(O = Lap,
j= \

00

r{!\(O = L bp.
j= 1

(9)

To find the two unknown functions cP\(O and r{! \(0, equations (8) are inserted in the
boundary conditions for the second fundamental problem, equation (5), with g\ = gz = O.
Multiplying both sides of equation (5) and its conjugate by (l/2ni)/(dO'/[0' - (]), where ( is a
point inside y, and integrating around y, we obtain the two following functional equations.

(lO)
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(11)

1/1,(0+_1.1 w:(J) cPt«J: da
2m jy W (a) (J-I.,

~1 [KcPO«J)- W,«J)cP'o(a)-l/Io(a)l ~~.
2m ~ W «J) Ja-(

The functions cP.(O and 1/1,(0 can be determined by equating the coefficients of like
powers of ( in the above equations. Finally, inserting cPl«() and 1/1 ,(0 in equations (8),
we obtain the form of the stress functions cP(O and 1/1(0. The stresses and displacements can
then be evaluated from equations (3) and (4), respectively.

We will apply this method to the case of an elastic plate containing a rigid rectangular
inclusion in a uniform stress field. The uniform tension S is assumed to make an angle a
with the x-axis. The basic stress components are then

axO S cos 2a, ayO = S sin2 a, TxyO = S sin a cos a. (12)

The corresponding stress functions are

S
cPo(z) = 4. z, 1/I0(z) =

S .
e- 21• .,.

2 ~.

The mapping function in the present case is [2]

v {I a+a (a-a)2 3 (a-a)(a1-a2) 5

z nJ(",) = C (+-2(+24-( +--80---(-

+~~4~_~~~-:-4(a2+a2)-2C + ...}.
896 .

where a = e2K
"i and K characterizes the ratio of the sides of the rectangle. All coefficients

are real. Since the right-hand side of the above equation is an infinite series, it is necessary
to truncate after a finite number of terms. This makes the rectangle have slightly curved
sides and rounded corners. However, since lal = 1 and the series converges quite rapidly,
it is always possible to retain a sufficient number of terms of the series to obtain a contour
ofdesired straightness on the sides and radius ofcurvature at the corners. Hence the above
equation can be approximated by

z = w«() = L w2j
j= 1

r2j - 3
,'> . (13)

(14)

Since (J = eilJ at the boundary, if = (J 1 and

w(a) C 2n-5 C 2n-7 C f. . = 2n-5(J - + 2n-7a + ... + 1a+ (a)
w (a)

where only the principal part of the Laurent expansion is evaluated. The remainder of the
expansion denoted by f(a) contains only negative powers of a, Since it has the form

'X

" C -(2j- tlL-(2j-lla ,
j= 1
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it is not required in the calculation of cPt(a). For

00

cPI(a) = L ap
j= I

we have

(15)

where

ko = 2a2C I +4a4C3+··. +(2n-4)a2n-4C2n-S

k l = alC I +3a3C3+'" +(2n-5)a2n-sC2n-5

Since the right-hand side of equation (10) can be evaluated explicitly, substituting
equation (15) into equation (10), we have

00 2n - S

K L ap- L kp-oo
j= I j= °

= ~ {[2 e2i~w_I +(K-1)wIK +(K-l)[w3e +ws(s + ...

+ (('2n- 3(2n- 3]}. (16)

(18)

Equating coefficients of like powers of ( on both sides, a system of algebraic equations
is obtained. The solution of these equations for aI, a2, a3'" completely determines cPI(O.
It is found that bo = 0 and all even powers of ( vanish. The function cPI(O then takes the
form

cPI(O = al(+a3e+ ... +a2n_3en- 3. (17)

With known values of cP o(();"'0(0 and cPl(O, we make the use of equation (11) to deter­
mine "'1(0. This yields

'" 1(0 = ~ {[(K - l)w_ I + 2 e -2i~WIK + 2 e - 2i~[W3e + ... + W2n- 3(2n- 3]

- Cal +3a3(2 + ... +(2n - 3)a2n- 3en- 3]f(0

-[3a3CI +5asC3+··· +(2n-3)a2n-3C2n-sK

- [5a sC1+ 7a7C3 + ... +(2n - 3)a2n- 3C2n-7K
3

- ... -(2n-3)C l en
-

s}.

Thus the solution is formally complete, and the stresses and displacements may be calcu­
lated from (3) and (4), respectively.

3. RESULTS AND DISCUSSIONS

A digital computer program based on the foregoing analysis has been written and the
numerical results have been obtained by machine computation. In particular, the results
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for the case of a uniform tension along the x-direction, i.e., C( = 0 in equation (12), are
presented in detail.

The length/breadth ratio of a rectangle obtained from the mapping function, equation
(13), with n = 5, 10, 15 and 20 is plotted against K in Fig. l. It can be seen that, for a given
value of K, the length/breadth ratio is almost constant for n = 10. The radius of curvature
at the corner of a square versus the number of terms n in the mapping function is plotted
in Fig. 2. It is observed that the convergence to a right angle is initially quite fast, but
becomes progressively slower with increase in n. The shape of the inclusion is plotted in
Fig. 3 for n = 3 and 10. This shows that the sides are very straight indeed for n = 10.
Similar trends were also observed for other values ofJength/breadth ratio a/b.

The normal and shearing bond stresses between the rigid inclusions and the elastic
plate were also obtained for various values ofalb and the number of terms n in each mapping
function. In particular, for the case of a sq uare inclusion under uniaxial tension, the normal
and shearing bond stress distributions for n = 5 and n = 10 are plotted in Fig. 4. Figure
4(a) shows the stress (Jyon the horizontal side and stress (J x on the vertical side. It has been
observed that the bond stresses along most of the length of the bond for II = 10 and for
II = 20 are essentially the same (less than one percent deviation), except near the corner
where the stresses are singular for an exact right angle. Similar calculations made with
various length/breadth alb ratios showed that the bond stresses for large n are very close
to those for n = 10.
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FIG. I. The length/breadth ratio (a/b) of the rectangle vs. K for n = 5, 10, 15, and 20 in equation (13).



~.....

;>
"0
el..,

!.
l14
c:
Q.
'<
o.....
g-
<'lo.g
~
~
::I.
~
;;;

~
So
8­
0'.....,
~

1
(JQ

g-
;e

~
S'
~

~
~

"2-..,
~

1'00'80'60·40'2

I I i I I , .. x/a
o

FIG. 3. Configurations obtained by conformal mapping for a square with n = 3
and n = 10.

15

p

10

I. 2a

n

53o

0·12

FIG. 2. The effect of truncating the mapping function series
(equation 13) on the radius of curvature lft the comers of a square.

n = 3

0·10-1 \ "
,

,/0 1 -----------~------- I
1·0

\
n = 10 \

I
0·08-1 \

0·8 J I
I
I
I

\ 0·,1
I

~ 1
I

!O~
I,,,,,,

0'04-1 \.
0·4 j II

I
I
I

0'02~ ~
I II

0·2



0
~y

2- 5, II -'-T
20 "'~ x

-l 1 \:"', J- o I ::::;;::=1 S/o2'01 JII
~20 --J

5, = 1 psi

I-
51 J ~

-I

HI
(j

.~

"- ~

(j
I :t,

;.-~

Z
b 1-0

~ -2
ClJ "'J;
::l

" Q.." .,§
:I:.8

0>
C

0
-0 J-3
E

0'55
(jz
0z
~
;.-
-<

II
~----'------,--- S!o -4

',/ 2

-0·5 -5

-1,0

FIG. 4_ Effect on normal and shearing bond stress distributions for a square inclusion with n = 5 and n = 10.



FIG. 5, Normal and shearing bond stress distributions for rigid rectangular inclusions with various length/breadth ratios (a/b) with n = 10.
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The normal and shearing bond stress distributions for uniform tension in the x-direction
are plotted in Fig. 5 for various values of a/b with n = 10. The magnitudes of the normal
stresses in the central portions of the vertical and horizontal sides of the rectangular inclu­
sion are almost constant. The stress (J x on the vertical sides is tensile and increases with a/b,
while the stress (Jy on the horizontal side is also primarily tensile, comparatively small, and
practically independent of a/b. The shearing stresses are negative on both the vertical and
horizontal sides for all cases. It is emphasized that the normal and shearing stresses at the
corners are singular for an exact right angle. However, the stresses at locations other than
the corners are affected very little by any slight corner rounding.
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A6CTJlllKT-llpe,nnaraeTcll cnoc06 onpe,neneHHll HanpllllceHHA B 6ecKOHe'lHOA ynpyroA nnaCTHHKe, co,nep­
lKalOLQeA lKecTKoe npllMoyronbHoe BKnlO'IeHHe, no,nseplKeHHoe paBHOMepHoMy nonlO HanpJllKeHHJI. llpaKTH­
'1ecKHA HHTepec :noro Hccne,nosaHHJI COCTOHT B TOM, 'ITO, KaK H3BecTHO, nOJlBnlllOTCJl6onbIllHe HanplllKeHHJI
npH coe,nHHeHHlIX sonOKOH H OCHOBbI B MHorObOlKHHCTbI COCTaBHbIX nHCTax, H 3TH HanplllKeHHll MoryT
6b1Tb npH'IHHOA pa3pYIlleHHll. llpe,nCTasneHble 3,necb pe3ynbTaTbI nonY'lalOTCJI Ha OCHOse npe,nsapHTenbHbIX
Hccne,nosaHHA B cPopMe MeTo,nOB paC'IeTa senH'IHHbI HanpJllKeHHA.

)l;aeTCJI peIlleHHe, HCXO,nJl H3 MeTo,na KOMnneKCHoro nepeMeHHoro MycxenHIllBHnH, npH y'leTe MeTo,na
KOHcPoPMHoro oT06palKeHHJI Wsapna-XpHCTOcPcPenJi. Ifccne,nYIOTCJI 3cPcPeKTbI pa3HbIX CTeneHeA oT6paCbI­
saHHJI 'lneHOB pJl,nOB cPyHKUHH oTo6palKeHHll Ha reOMeTpHIO BKnlO'IeHHJI H KpaeBble HanpJllKeHHJI. KOHcTaHTH­
pyeTCll. 'ITO ,necllTb 'lneHOB pll,na Boo6LQe ,nOCTaTO'lHbI ,nnJl nony'leHHJI nonHoro TLQaTenbHoro 06pa3a
KpaeBbIX HanpJllKeHHA npH coe,nHHeHHH BKnlO'IeHHll H nnaCTHHKH.


